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Discretization in time gives rise to noise-induced improvement of the signal-to-noise ratio
in static nonlinearities
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For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced
improvement in static nonlinearities is of great interest for practical applications since many systems can be
modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-
induced performance improvement occurs in those systems as a consequence of discretization in time with the
achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total
measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain
larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental
results bring closer two different theoretical models for the same class of nonlinearities and shed light on the

behavior of static nonlinear discrete-time systems.
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I. INTRODUCTION

Noise is generally considered to be an undesirable phe-
nomenon, and considerable effort is expended to reduce or
eliminate it. These efforts generally employ filtering, which
is essentially a linear process. Unfortunately, filtering can
only eliminate the noise that is outside of the band occupied
by the signal, i.e., outside of the band of interest. For the
noise inside the band of interest, any linear processing will
affect the signal and the noise in the same way, and no im-
provement is possible.

However, under certain conditions, improvements for
noisy signals are possible if nonlinear systems are used for
processing. Static nonlinearities are of particular theoretical
and practical interest since many practical systems can be
modeled after them (for example, sensors, quantizers, or lim-
iters). Consequently any performance improvement that they
offer will have an impact on a broad range of applications.

In order to characterize the performance improvement
various parameters can be used, but in the context of com-
munications and signal processing, the most common one is
signal-to-noise ratio (SNR). Others include the Fisher infor-
mation, entropy, probability of error, etc. SNR gain defined
as the ratio of the output to input SNRs is also common. (See
for instance [1,2], also [3-6].)

A general theoretical framework enabling analysis of such
phenomena in static nonlinearities was published in [7]. In
order to facilitate calculations, it employed discretization in
time. Some results based on this framework show that in
certain cases improvements are possible [7-11]. In addition
to that, a possibility of noise-induced improvement of SNR
or SNR gain was registered for a number of cases
[7,8,11-13]. The SNR or SNR gain showed a peak for a
nonzero input noise level. This framework will be referred to
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as the “discrete-time theory” in the rest of the paper.

By contrast, a much older theory analyzing SNR improve-
ments for bandpass signals processed by static nonlinearities
was presented in [14]. It was based on Refs. [15,16] and
developed using Fourier-transform methods for continuous-
time signals (hereafter referred to as the “continuous-time
theory”). The continuous-time theory predicts maximum
SNR gains of up to 3 dB for the analyzed nonlinearities,
decreasing with the noise level. Theoretical results related to
this theory were published in [17,18]. Experiments based on
the continuous-time theory have been used for decades, par-
ticularly in the field of radio astronomy [19].

On the account of the registered nonmonotonic evolutions
of SNR and SNR gain, the authors of [7] claimed a specific
type of stochastic resonance.

By contrast, other authors [20,21] argue that stochastic
resonance is not possible in static nonlinearities because
there are no apparent inherent time scales in such systems.

Both mentioned theories claim to be exact and general, as
they are indeed developed with mathematical rigor, but they
predict that the same system will exhibit significantly differ-
ent properties. In this paper we demonstrate that the experi-
mental results for the same type of static nonlinearity, in this
case a threshold nonlinearity, will be consistent with predic-
tions of the theory that uses the same approach in its math-
ematical development. In other words, the physical imple-
mentation of the nonlinearity (continuous or discrete time)
determines its behavior. An obvious dependence on the sam-
pling frequency in the discrete-time implementation is dem-
onstrated. Our results indicate that discretization in time and
aliasing play a key role in obtaining the noise-induced per-
formance improvement, with the SNR gain being dependent
on the ratio of input noise bandwidth to total measurement
bandwidth.

II. THEORETICAL BACKGROUND

We present a summary of the theoretical results of
continuous-time and discrete-time frameworks.

©2009 The American Physical Society
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A. Continuous-time theory

The theoretical framework of the continuous-time theory
was developed in [14] for a sinusoidal signal x(r)
=A sin ot corrupted by narrow-band Gaussian noise being
processed by a symmetric nonlinearity. The nonlinearity’s
transfer characteristic g is assumed to be a nondecreasing
odd function of the input, that is, {y(r) =g[x(¢)]}, with x and y
being the input and output, respectively. The frequency band
of interest is defined by the region in which the input noise
spectrum is nonzero. This framework focuses only on that
frequency band and assumes that the nonlinearity is followed
by a filter that eliminates all harmonics. The following are
the equations from [14] that enable the calculation of SNRs
and SNR gain.

The powers at the output of the nonlinearity can be cal-
culated from the output autocorrelation function R (7) at 7
=0. The autocorrelation function for the given conditions is

o0 o0 )
R(7)=2 > hfno CoS mw, 7+ > %R];,(T)

m=1 k=1
(m odd) (k odd)
+2 E E ""‘RN(T)cos ma;T, (1)
m=1 k=1
(m+k odd)

where Ry(7) is the input noise autocorrelation function, w; is
the input signal’s angular frequency, and coefficients #,,;, are
calculated as
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Here, C* is a contour along the imaginary axis in the
complex plane with a possible indentation to the right of the
origin (to avoid singular and branch points). f, is the unilat-
eral Laplace transform of the transfer characteristic g on the
interval [0,+). oﬁ, is the power of the input noise, com-
pletely contained in the narrow band around the signal fre-
quency. 1, is the mth-order modified Bessel function of the
first kind, and A is the input signal amplitude.

Equation (1) contains terms for all signal and noise com-
ponents at all frequencies. It is arranged so that the first sum
contains the output signal terms due to the interaction of the
input signal with itself, and the remaining two sums contain
terms resulting from the input noise interacting with itself
and with the input signal. Since the focus is on the band
around w,, only those terms that contribute to that frequency
band are of interest. After selecting the relevant terms, mul-
tiplying them with factors that represent the fractions of
those terms that appear in the band of interest (the detailed
process is described in [14]), and setting 7=0, the powers at
the output can be calculated.

From the signal part of Eq. (1), the output signal power at
frequency w, can be calculated as

PS RS (O) 2/’110, (3)

where Ry (7) is the autocorrelation of the output signal (it
only contains the term for m=1 from the first sum) and co-
efficient & is calculated as described above. All other terms
contributing to the first sum are eliminated by the filter.
The output noise power in the narrow band of interest

0, m+k even around w, can be broken down into (i) the component due to
h (1) ) s the noise interaction with itself Py (vxy) and (ii) the compo-
mk 2%] f F(2)e¥ 2k (zA)dz, m+k odd. nent of the output noise power which is due to the noise
et interaction with the signal Py (sxn)-
(2) These components can be calculated as
|
Pr =1 X TRY0)+ 3 X BR0) + 3 X ERV(0) + 3 x FR(0)7 +- 4)
and

"3, his
Py (vxw) =% X 2 X TIRy(0) + ( :

hm h34

+Exox FrIxoaxFegx2x

where R(0) is the input noise power (equal to oy) and the
. coefficients are calculated as described in Eq. (2).
As the total noise output power is Py =Py sxy)

+PN0(NX ~)» the SNR gain is calculated as
2
PSD ON

GSNR =

— 6
Py A%2 (©)

In [14], exact expressions were obtained via confluent hy-
pergeometric functions for “rooter” nonlinearities of the type

x2x By o x )R 0+ (4

B RA(0) 4 - | 5)

x2x 21 Lo x )R (0)?

y=x!"". Asymptotic behavior for oy — 0 and oy — % was cal-
culated for a hard threshold nonlinearity (v—oc) and can
serve as a check for numerical models.

B. Discrete-time theory

Discrete-time theory was developed in [7] for an arbitrary
periodic signal corrupted by ideally white noise processed by
an arbitrary static memoryless nonlinearity. The conditions
for the input signal, noise statistics, and the type of nonlin-
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earity are more relaxed than in [14], but a strong requirement
of noise whiteness is assumed in order to obtain explicit
results.

White noise, however, is a purely mathematical idealiza-
tion with infinite power (oy— ) and a Dirac & function as
autocorrelation. Physically, it is unrealizable as all physical
noises have a finite bandwidth. To facilitate calculations and
keep the results exact, the authors move to the discrete-time
domain. It is assumed that all quantities are periodically
sampled with a sampling interval At that is much smaller
than the signal period. The move to the discrete-time domain
also resolves the issue of noise whiteness. Namely, the noise
bandwidth is inversely proportional to its correlation time 7.
and by choosing Ar>7,, the resulting discretized noise is
“whitened.” From the general expression given in [7], the
SNR (R) of the output at the input signal frequency can be
calculated as

7 o
M (var[y()])AtAB

The signal component at the output is the cyclostationary
expectation of the total output E[y(r)]. Its power is the
squared absolute value of the Fourier coefficient at the fun-
damental frequency, which is in turn calculated as

Yy = (E[y(1)]e 7m0y, (8)

where (...) denotes stationarization by time averaging over
one signal period, 7, which is performed in N discrete-time
points determined by the sampling interval. The discretiza-
tion interval in the denominator is a result of the Fourier
transformation of the normalized stationary autocovariance
of the output. This autocovariance is generally difficult or
impossible to obtain but, for discrete white noise it evaluates
to a constant Az. (var[y(z)]) is the stationarized variance of
the output signal. The product of these two terms determines
the output noise power spectral density. To obtain the noise
power in the narrow band around the signal, it is multiplied
by that bandwidth AB.

(var[y(r)]) is calculated from the nonstationary expecta-
tions E[y(#)] and E[y(1)*]:

E[y(t)]=f 8(&f[§-x(0)]d¢, &)

Ely(1’] =f 8(&°f,[€~x(n]dé. (10)

The input SNR for the discretized signal plus noise mix-
ture is

A2

Ripy=—5—""",
" 4oyArAB

(11)

where A is the input signal amplitude, o%, is the total input
noise power, and Az comes from the result for the power

PHYSICAL REVIEW E 80, 011119 (2009)

spectral density of the white discrete input noise.
Hence

KEDY ()™M 2 407
Gay@) A2

The discrete-time framework is more general than the
continuous-time one and can be used to analyze all the non-
linearities and inputs for which the continuous-time frame-
work was developed but with one major difference—the in-
put noise must be white as opposed to strictly narrowband.
This difference is the reason why total noise powers are used
in continuous-time framework formulas, and the discrete-
time framework works with noise power spectral densities. It
must be taken into consideration when comparing the results
obtained from the two for the same nonlinearity. Although
the results from both frameworks are usually plotted against
the input noise rms amplitude oy, in the continuous-time
framework oy is rms amplitude of narrowband noise, while
in the discrete-time framework it refers to rms amplitude of
discrete white noise. Equations (6) and (12) have a similar
shape, but their first terms, representing the output SNR, are
rather different in the way they are calculated. The former is
obtained by integrating continuous functions, and the latter is
obtained by averaging in the discrete-time domain, with as-
sumed undersampling. Having in mind that second terms in
both equations are constant, any differences between them
should stem from different approaches in calculating the out-
put SNR.

Gonr = (12)

C. Predicted behavior

SNR gain was analyzed as a function of input noise level
for a threshold nonlinearity with threshold voltage V,,
=0 V by using both continuous-time and discrete-time
frameworks. Its functional description is given in Eq. (13);

1 for V,,>V,
0 for V,, =V, (13)
-1 for V,, <V,

V

out =

The input signal was a sinusoid corrupted by the Gaussian
noise. As stated previously, for the former the input noise
was narrowband and for the latter it was assumed to be ide-
ally white. On the functional level, this is the only difference
between them, but it has to be kept in mind, since it means
that they are plotted against different x axes. Particularly, in
practical experimental measurements, if they are to be plot-
ted against the same abscissa, one of them needs to be scaled
appropriately. Figure 1 shows predictions of SNR gain for
both cases (plotted on the same graph, for convenience, but
bearing in mind the different nature of o). They are strik-
ingly different, both in values and trends, especially in the
low noise region. The continuous-time theory predicts SNR
gain of approximately 3 dB as o, — 0, which then decreases
monotonically as the noise level increases, and eventually
asymptotes to —0.77 dB. On the other hand, the discrete-
time theory predicts a nonmonotonic evolution of SNR gain,
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FIG. 1. (Color online) Predictions of the continuous-time and
discrete-time theories.

which falls sharply as oy—0, has a peak at approximately
oy=0.56 and converges to —2 dB as the noise increases.
This theory predicts no SNR gain at all—the output SNR is
consistently below that at the input.

The two theories give two clearly different predictions for
the same nonlinearity, with the only difference between the
systems analyzed is the bandwidth of the input noise, and the
assumption of discrete or continuous time.

D. Simulations with finite bandwidth

The discrete-time theory provides exact results for white
noise and approximates results for some special cases of cor-
related noise. So far it has not been successfully extended to
cover bandpass noises. With narrowband nature of the input
noise being an essential requirement for the applicability of
the continuous-time theory, linking the two analytically in an
exact manner is not yet possible. Instead, a series of numeri-
cal simulations was run in MATLAB, with varying noise
bandwidths—starting with an infinite bandwidth white
Gaussian noise (as in the discrete-time theory) and finishing
with a narrowband one (simulating the discrete-time experi-
ment that follows).

Simulations’ parameters are given in Table I. The sam-
pling rate and signal frequency were chosen to reflect the
relationships in the experiment that follows.

TABLE 1. Simulations’ parameters.

Sampling frequency (F,) 44100 Hz
Signal frequency (f) 89 Hz
Signal amplitude (A) 1

Variable (from 0.01 to 20)

Butterworth type bandpass
with changing bandwidths

Window type and length Hann, 44100 samples
Number of FFT points 216

Noise rms amplitude (o)

Filter
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FIG. 2. (Color online) Simulation results for signal-to-noise ra-
tio gains for white input noise and four cases of bandpass noise. The
bottom curve is obtained in the case without filtering. The curve
above it is for 10 kHz bandwidth (“filter 1) and the filter band-
widths are then getting progressively narrower going upwards (“fil-
ter 2°—260 Hz, “filter 3’—200 Hz and “filter 4°—160 Hz, respec-
tively). The fourth case corresponds to the narrowband input as
required by the continuous-time theory. oy values at filter input are
normalized to signal amplitude.

The SNR is defined in terms of the ratio of power spectral
densities integrated over a known bandwidth. For continuous
time,

R= S(w)dw/f S(w)dw. (14)
ABy ABy
In discrete time, SNR can be calculated as (see [22,23])
R = E Sprrk)/ 2 Sprr(k), (15)
keABg keABy

where R is the SNR and § is the power spectral density of
the noisy signal, Sppr is its discrete estimate obtained using
discrete Fourier transform (using the Welch’s periodogram
method [24]). The spectral resolution of the measurement is
determined by the integration time of the measurement. ABg
(AByg) is the narrow continuous (discrete) frequency band
around the signal frequency (index closest to the signal fre-
quency) and ABy (ABy) is the band of noise measurement
around or near the signal frequency (index closest to the
signal frequency).

The simulations’ results are shown in Fig. 2. It is obvious
that the simulation for ideally white noise corresponds to the
prediction of the discrete-time theory. Reducing the noise
bandwidth (compared to the total measurement bandwidth)
results in increasing the SNR gain, while the general shape
of the curves is preserved. Finally for the narrowband case
(as required in Sec. IT A), the maximum gain corresponds to
the predictions of the continuous-time theory, as does the
asymptotic value as oy— %. However, there is an important
difference. The simulation shows a noise-induced improve-
ment of SNR gain for the narrowband case, which is in con-
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FIG. 3. Experimental setup with continuous (1.) and discrete
time (2.) nonlinearity. WGN stands for “white Gaussian noise.”

flict with predictions of the continuous-time theory. This is
interesting since the only difference between them is discreti-
zation in time, and the Nyquist criterion is satisfied.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In order to investigate the effects that discretization in
time has on static nonlinearities and how the parameters of
discretization affect their behavior, two experiments were
conducted. The first experiment shows that the behavior of
the nonlinearity can agree with predictions of both theories,
depending on its physical implementation. The second ex-
periment shows the connection between the inherent time
scale of the discretization process and the observed results.

A. Continuous time vs discrete time

In the first experiment, the system from Fig. 3 was imple-
mented. The threshold nonlinearity with threshold voltage
V=0 V was first realized as an analog continuous-time cir-
cuit and then in a discrete-time implementation. Its func-
tional description is given as

Vewr for V,, >V,
Voe=) 0 for V;, =V, (16)
- th for Vin < Vth'

In the experimental setup, two Agilent 33220A function
generators were used, one as the signal and the other as the
noise source. The guaranteed white noise power spectral
density for these generators is up to 9 MHz. As the band of
interest in the experiment was in a much lower-frequency
range and the filter bandwidth was narrow, the noise was
locally white. The adder circuit was a standard unity-gain
inverting adder, the filter was an active two stage band pass
filter, and the analog threshold nonlinearity was an open-loop
operational amplifier, which approximates the characteristic
given in Eq. (16) very well. All analog circuits were built
around high-speed large bandwidth LM6361N operational
amplifiers.

For the discrete-time implementation of the nonlinearity a
digital signal processing board based around a Xilinx Spar-
tanXL chip was used. The board contains standard analog
signal conditioning circuitry, analog-to-digital converter
(ADC), and digital-to-analog converter (DAC) and between
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TABLE II. Experiment system parameters.

100 kHz
9,0.5,and 0.25 V
Variable (from 0.2 to 20)

Two stage second-order Sallen-Key
bandpass with 98 kHz and 102 kHz
corner frequencies

Signal frequency
Signal amplitude (A)
Normalized noise rms (o)

Filter

them a look-up table (LUT) into which the transfer charac-
teristic can be programmed. The sampling rate was 50 MHz,
and conversion resolution was 8 bits/sample.

The measurements of signal and noise powers were per-
formed on a spectrum analyzer, with resolution and video
bandwidths set to 300 Hz and video averaging to 30 passes.
The analyzer measures the power spectral density of the in-
put signal, integrated over the passband of the input filters.
Thus, it is possible to directly read the power for the set
bandwidth at any frequency. (More details on the spectrum
analyzer operation can be found in [25].) Other system pa-
rameters are given in Table IL.

In order to obtain lower values of the normalized oy, the
signal amplitude from the “signal” function generator was
kept constant, and the noise power from the “noise” function
generator was increased.

Figures 1 and 2 indicate biggest differences for small val-
ues of oy. Figure 4 shows the experimental results overlaid
with theoretical predictions from Egs. (6) and (12) and simu-
lation results for no filtering and a narrowband filter (as in
the discrete-time theory and in discrete-time experiment), re-
spectively. In order to plot the continuous-time theory curve
in the same figure, the scaling factor of 0.022 for its horizon-
tal axis was determined from the measurements of the filter’s
output noise rms value for different values of input oy. The

5 T
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1r 1
— 0 [ /
A
< 27,
¢ 34
c AT
S 5[
x -6r
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w T —— continuous-time theory
:g : — discrete-time theory
-10 — — simulation (no filter)
-1 — — simulation (filtered)
12 ) ) . u
13t % continuous-time experiment | |
14 + o discrete-time experiment
-15 :

0.1 0.2 0.3 04
input noise standard deviation (o)

0.5 0.6

FIG. 4. (Color online) signal-to-noise ratio gains, experimental,
simulated, and theoretical. oy values at filter input are normalized
to signal amplitude. Error bars for simulation with filtering are ap-
proximately the same as for the simulation without filtering. The
“simulation (filtered)” curve corresponds to the filter 4 curve from
Fig. 2.
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FIG. 5. (Color online) Experimental measurements of signal-to-
noise ratio gains, analog, and discrete time. oy values at filter input
are normalized to signal amplitude. Error bars for all measurements
are approximately the same as those shown in the plot.

SNR gain measurements in the continuous-time nonlinearity
remain around 3 dB, within the measurement error for low
values of the input noise. The behavior in the discrete-time
case is significantly different. Here the SNR gain decreases
sharply for very low values of oy, approaching the values
from the continuous-time measurements as the input noise
grows. We see a clear case of noise-induced SNR improve-
ment as predicted by the discrete-time theory.

Overall, the analog experimental results agree with the
continuous-time theory within error-bars, while the digital
experimental results display trends predicted by the discrete-
time theory but with different absolute values. The numerical
simulations of the discrete-time implementation agree well
with the discrete-time experiment for narrow-band noise and
the discrete-time theory for white noise.

We notice that noise-induced improvement is registered in
the predictions of the discrete-time theory, the digital imple-
mentation of the nonlinearity, and in both simulations. What
they have in common is the presence of discrete-time signal
processing. By contrast, in the continuous-time implementa-
tion of the nonlinearity there is no noise-induced improve-
ment nor is it predicted by the continuous-time theory.

To obtain a complete picture, additional measurements
were done for two large values of oy and the results are
shown in Fig. 5. For the normalized values of oy=10 and
oy=20 the noise power from noise function generator was
kept constant and the signal power from signal function gen-
erator was reduced. In both cases, the gain decreases for
large levels of input noise. The continuous-time implemen-
tation of the nonlinearity displays a monotonic decrease in
SNR gain, while the discrete-time implementation displays
noise-induced SNR improvement, both in line with predic-
tions of the respective theories.

Nonlinear processing in discrete time inevitably causes
aliasing, which does not happen in either analog or linear
discrete-time systems. As shown in [17,16], when band lim-
ited noise passes through a nonlinearity, its spectral power is
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spread outside the original band, and its harmonics appear at
higher frequencies. In a discrete-time system, any harmonic
component above F/2 will be aliased into the band deter-
mined by the sampling rate. We hypothesize that the aliased
spectrally correlated components of both signal and noise,
and the way they are added up [26,27], may be the cause of
the different behavior of systems with discrete-time process-
ing and of the noise-induced SNR improvement they display.
This is a matter for further investigation.

It should be noted that aliasing is implied in the discrete-
time theory since the condition A7> 7. can be interpreted as
deliberate aliasing.

B. Influence of the discretization time

The connection between sampling, sampling rate, and
SNR in nonlinear processing of discrete-time signals is not
unknown. It has been noticed in works related to radio astro-
physical spectral measurements [28,29] where sampling and
threshold-nonlinearity processing were both done in one step
(one-bit sampling). It was shown that, in the conditions of
very low input SNR, increasing the sampling rate beyond the
Nyquist criterion improves the SNR at the output of correla-
tional receivers.

As mentioned in Sec. I, some authors have argued that
nonmonotonic evolution of the performance of static nonlin-
earities as a function of noise is a signature of stochastic
resonance. Others, however argue that this is not the case,
since there is no characteristic time scale present in the sys-
tem itself. In their view, this phenomenon should be consid-
ered as a special case of the “dithering” effect. Dithering
arises from discretization in amplitude, and it is generally
considered that if sampling is “properly applied,” it is “error-
free” [20]. The generally accepted rule in linear digital signal
processing is to satisfy the Nyquist criterion. The effects ob-
served in the experiment described here arise from discreti-
zation in time, which cannot be ignored in spite of the sam-
pling rate being well above the Nyquist rate. In fact, the
Nyquist criterion cannot be applied blindly even in the case
of simple processing as shown in [30]. In order to avoid
aliasing, the rate at which the signal is periodically sampled
needs be matched to the subsequent signal processing. With
nonlinear processing the only way to completely avoid alias-
ing in this scenario would be to increase the sampling rate to
infinity.

Discretization in time has its own ‘“characteristic time
scale”—the sampling period. It is therefore interesting to
characterize how the relationship between F,, signal fre-
quency and bandwidth affects the SNR behavior and noise-
induced improvements for low-pass signals, which are the
most common case in signals discretization.

To investigate this, the system from Fig. 3 was modified
as shown in Fig. 6. The nonlinearity was analog, and the
signals were acquired at points 1 and 2 using a 10-bit digi-
tizer with a variable sampling frequency. The analysis was
done on a PC using MATLAB. System parameters are given in
Table III.

Power spectral densities were estimated using peri-
odogram method, with Hann window of variable length, in
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FIG. 6. Experimental setup for the second experiment. WGN
stands for white Gaussian noise.

order to keep the frequency resolution for different sampling
frequencies constant.

Figure 7 shows that for larger o the SNR gain increases
with F—behavior similar to that of correlation receivers.
When oy— 0, SNR gain still decreases for all F as with the
discrete-time nonlinearity and simulations. However, the
slope is changed as F| increases. Larger F leads to gains
larger than unity but with a less pronounced noise-induced
improvement. This is not surprising since the limit case of
F;— o corresponds to continuous time, and the results for an
increasing sampling frequency show a tendency toward the
continuous-time theory prediction and the continuous-time
experiment results from Fig. 4. Changing the relationship
among the signal frequency, noise bandwidth, and F|
changes the resonant curves, making this phenomenon fre-
quency dependent.

These results further strengthen the connection between
discretization in time and noise-induced improvement of
SNR gain. There is indeed a dependence on time scales, that
is, on the relationship between the sampling time, signal pe-
riod, and noise correlation time. This is why such behavior is
not observed in the continuous-time system and becomes
less pronounced with shorter sampling periods.

IV. CONCLUSION

As we have seen the discrete-time theory predicts noise-
induced improvements and nonmonotonic behavior for SNR
and SNR gain for static nonlinearities in certain conditions.

On the other hand, the much older continuous-time theory
predicts no nonmonotonicity or noise-induced improvements
at all for the nonlinearity investigated here.

In our experiment, conducted for a threshold static non-
linearity, we have demonstrated that a system with one func-

TABLE III. Second experiment system parameters.

90 kHz
Variable (500 kHz-5 MHz)
1048064 samples
(for all sampling frequencies)
Variable (from 0.1 to 2)
Two stage fourth-order Sallen-Key
low-pass with 200 kHz corner
frequency

Signal frequency
Sampling frequency

Data record length

Normalized noise rms (o)

Filter
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FIG. 7. (Color online) Dependence of signal-to-noise ratio gain
curves on the sampling rate F,, (oy values at filter input, normal-
ized to signal amplitude).

tional description can display different behaviors, depending
on its implementation details. If the nonlinearity is imple-
mented in continuous time, it behaves as predicted by the
continuous-time theory, and if it is implemented in discrete
time, it follows the predictions of the discrete-time theory.
We have also demonstrated the importance of discretization
in time for obtaining the noise-induced improvement of SNR
gain.

The authors of the discrete-time theory argue there that
the results obtained there represent a specific type of stochas-
tic resonance found only in static nonlinearities. Their inde-
pendence on frequency is seen as an advantage over the dy-
namic stochastic resonant systems.

Other authors, however, argue that the observed effects
are not stochastic resonance at all, precisely for the men-
tioned lack of frequency dependence and characteristic time
scale. In their view these effects should be considered a spe-
cial case of dithering.

The proponents of the “dithering explanation” ignore dis-
cretization in time, assuming that it is enough to have a high
enough sampling rate. As demonstrated here, the effects of
discretization in time cannot be ignored even for high sam-
pling rates. Moreover, discretization in time has a character-
istic time scale—the sampling interval, whose influence dis-
appears only in the limit case of the infinite sampling rate.

These results contribute to the ongoing debate on whether
or not static nonlinearities display stochastic resonance and
what conditions lead to such behavior. Just as importantly,
they indicate that the Nyquist criterion cannot be applied
blindly in nonlinear digital signal processing. An observation
that may profoundly affect the range of applications to which
digital signal processing may be applied.
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